
Smart contract
security audit

DCIP
v.1.2

No part of this publication, in whole or in part, may be reproduced, copied, transferred or any other right reserved to its copyright a CTDSec,

including photocopying and all other copying, any transfer or transmission using any network or other means of communication, in any form or

by any means such as any information storage, transmission or retrieval system, without prior written permission.

Table of Contents

1.0 Introduction 3

1.1 Project engagement 3

1.2 Disclaimer 3

2.0 Coverage 4

2.1 Target Code and Revision 4

2.2 Attacks made to the contract 5

3.0 Security Issues 7

3.1 High severity issues [3] - Fixed 7

3.2 Medium severity issues [1] - Fixed 9

3.3 Low severity issues [1] - Fixed 10

3.4 Informational severity issues [5] - Fixed 12

4.0 Owner Privileges 15

5.0 Summary of the audit 16

Copyright © CTDSec - All rights reserved 2 | Page

1.0 Introduction

1.1 Project engagement

During June of 2021, DCIP engaged CTDSec to audit smart contracts that they created. The engagement

was technical in nature and focused on identifying security flaws in the design and implementation of

the contracts. DCIP provided CTDSec with access to their code repository and whitepaper.

1.2 Disclaimer

It should be noted that this audit is not an endorsement of the reliability or effectiveness of

the contract, rather limited to an assessment of the logic and implementation. In order to

ensure a secure contract that’s able to withstand the network’s fast-paced and

rapidly changing environment, we at CTDSec recommend that DCIP team put in place a

bug bounty program to encourage further and active analysis of the smart contract.

Copyright © CTDSec - All rights reserved 3 | Page

2.0 Coverage

2.1 Target Code and Revision

For this audit, we performed research, investigation, and review of the DCIP contract followed by issue

reporting, along with mitigation and remediation instructions outlined in this report. The following

code files are considered in-scope for the review:

Source:

● DCIP.sol [SHA256] -

46a587b7885be9403efbd9280fc1b7715e9245ae4f43893df629239213b55b2a

● Presale.sol [SHA256] -

e867f74f5f93989c87cd1c18245c0701f9e166e74655105c9a2c2c392a26c99e

● Voting.sol [SHA256] -

b5f7af6fa4cde92e64e647bb585b953ccfa855ac42ce750850170174a275f562

Copyright © CTDSec - All rights reserved 4 | Page

2.2 Attacks made to the contract

In order to check for the security of the contract, we tested several attacks in order to make sure

that the contract is secure and follows best practices.

№ Issue description. Checking status

1 Compiler warnings. PASSED

2 Race conditions and Reentrancy. Cross-function race
conditions.

PASSED

3 Possible delays in data delivery. PASSED

4 Oracle calls. PASSED

5 Front running. PASSED

6 Timestamp dependence. PASSED

7 Integer Overflow and Underflow. PASSED

8 DoS with Revert. PASSED

9 DoS with block gas limit. PASSED

10 Methods execution permissions. PASSED

11 Economy model. If application logic is based on an
incorrect economic model, the application would not
function correctly and participants would incur financial
losses. This type of issue is most often found in bonus
rewards systems, Staking and Farming contracts, Vault and
Vesting contracts, etc.

HIGH ISSUES -
SOLVED BY DEV
TEAM

12 The impact of the exchange rate on the logic. PASSED

13 Private user data leaks. PASSED

14 Malicious Event log. PASSED

15 Scoping and Declarations. PASSED

16 Uninitialized storage pointers. PASSED

17 Arithmetic accuracy. PASSED

Copyright © CTDSec - All rights reserved 5 | Page

18 Design Logic. HIGH ISSUES -
SOLVED BY DEV
TEAM

19 Cross-function race conditions. PASSED

20 Safe Zeppelin module. PASSED

21 Fallback function security. PASSED

22 Overpowered functions / Owner privileges OVERPRIVILEGED
OWNER - SOLVED
BY DEV TEAM

Copyright © CTDSec - All rights reserved 6 | Page

3.0 Security Issues

3.1 High severity issues [3] - Fixed

DCIP Contract:

1. Calculation error Issue:

The function _burnTokenFromWallet() subtracts rBurn from _rOwned only if the account is not excluded.

The function _burnTokenFromWallet() does not decrease allowance of account for the owner.

The function _burnToken subtracts only from _tOwned.

Recommendation: Subtract rBurn from _rOwned in any case.

Dev update: Fixed file DCIPv2.sol [SHA256]:

b5b5744fe577311be3a5fd74cc7cdbefb547ac04a25a693a6971da1c10ff68a9

https://github.com/DCIP-Finance/smart-contracts/blob/main/contracts/DCIP.sol

Copyright © CTDSec - All rights reserved 7 | Page

https://github.com/DCIP-Finance/smart-contracts/blob/main/contracts/DCIP.sol

2. Allowance error Issue:

The owner can burn an unlimited number of tokens from any account.

Recommendation: Check allowance for owner or write about that possibility in your white paper.

Dev update: Fixed file DCIPv2.sol [SHA256]:

b5b5744fe577311be3a5fd74cc7cdbefb547ac04a25a693a6971da1c10ff68a9

https://github.com/DCIP-Finance/smart-contracts/blob/main/contracts/DCIP.sol

Owner can’t burn more tokens from external accounts.

3. Economy model issue Issue:

The contract burns tokens by sending them to _tOwned[_burnAddress] and excludes that address from

reward. _burnAddress can be included to reward.

_marketingWalletAddress and _communityInvestWalletAddress are excluded but also can be included to

reward.

Recommendation: The contract logic is written for distributing tokens to these addresses correctly only if

they are excluded.

The function includeInReward() should check and disallow including of these addresses. Or you can

rewrite the distribution logic.

Dev update: Fixed file DCIPv2.sol [SHA256]:

b5b5744fe577311be3a5fd74cc7cdbefb547ac04a25a693a6971da1c10ff68a9

https://github.com/DCIP-Finance/smart-contracts/blob/main/contracts/DCIP.sol

Copyright © CTDSec - All rights reserved 8 | Page

https://github.com/DCIP-Finance/smart-contracts/blob/main/contracts/DCIP.sol
https://github.com/DCIP-Finance/smart-contracts/blob/main/contracts/DCIP.sol

3.2 Medium severity issues [1] - Fixed

Presale contract

1. Function declaration Issue:

The function withdraw() declared as payable.

Recommendation:

That kind of functions do not receive eth/bnb and should not be payable

Dev update - issue fixed:

Copyright © CTDSec - All rights reserved 9 | Page

3.3 Low severity issues [1] - Fixed

DCIP contract:

1. Out of gas Issue:

The function includeInReward() uses the loop to find and remove addresses from the _excluded list.

Function will be aborted with OUT_OF_GAS exception if there will be a long excluded addresses list.

The function _getCurrentSupply also uses the loop for evaluating total supply. It also could be aborted

with OUT_OF_GAS exception if there will be a long excluded addresses list.

Recommendation:

Check that the excluded array length is not too big.

Dev update - Fixed:

Copyright © CTDSec - All rights reserved 10 | Page

Copyright © CTDSec - All rights reserved 11 | Page

3.4 Informational severity issues [5] - Fixed

DCIP contract:

1. Constant variables Issue:

Functions calculateCommunityFee(), calculateMarketingFee(), calculateBurnFee() and calculateTaxFee()

calculate fees dependent on _holderToTimestamp list and use different numbers inside of these

functions.

Recommendation: Create two types of constant variables. First type will be used when the current

block.timestamp is less than (_holderToTimestamp[_msgSender()] + 24 hours), second for the rest.

Dev update - Fixed:

Presale contract:

2. Contract’s decimals

According to logic in getCalculatedAmount() function token that used in presale should have the same

decimal as BNB.

Dev update - Fixed:

Copyright © CTDSec - All rights reserved 12 | Page

3. Unused variables

The variable presale is unused. The variable Expired in VotingState structure is unused.

Copyright © CTDSec - All rights reserved 13 | Page

Dev update - Variable is deleted. Fixed.

Voting contract:

4. Unused code Issue:

The Voter structure has unused variables: vote and weight.

The function vote() calculates voter weight by dividing voter balance to total supply of the myToken.

Total supply of the myToken should always be greater than or equal to the balance of a certain address.

There is only one case when voter weight value equals to 1 - voter has all tokens of myToken contract.

The variable endedAt is unused.

The variable presale is unused. Recommendation: Remove unused code.

Dev update - unused variables are deleted.

5. Access error

The onlyOwner() modifier has uncommon logic.

If the owner address is equal to 0x9bF6Fbd80DBE0dFa0f05B3cBc111D46cbb1D055a, any account will be

able to call functions with onlyOwner modifier.

Dev update - Fixed:

Copyright © CTDSec - All rights reserved 14 | Page

4.0 Owner Privileges

DCIP:

Owner can burn an unlimited number of tokens from any account. FIXED.

Owner can change excluded from fee and excluded from reward lists.

Owner can change tax and liquidity percent.

Owner can change the max transaction amount by passing percent of total supply.

Owner can enable and disable swap and liquify logic.

Owner can lock and unlock. FIXED.

Voting:

Owner(chairperson) can add proposal.

Owner can start voting.

Owner can force terminate voting.

Presale:

Owner can withdraw any tokens from the contract address to himself. FIXED.

Owner can withdraw BNB from the contract to himself even if presale in active status. FIXED.

Owner can change:

1. white list;

2. presale address;

Copyright © CTDSec - All rights reserved 15 | Page

5.0 Summary of the audit

Development team improved and fixed all issues that were found in v1. Contract does not contain any

issue and it’s safe to be deployed.

Fixed file DCIPv2.sol [SHA256]:

b5b5744fe577311be3a5fd74cc7cdbefb547ac04a25a693a6971da1c10ff68a9

Fixed file Presalev2.sol [SHA256]:

f68ae6f7ae64bc68956d849c488ff59eae4ba6bd77d6d873ec2ff1b079f62470

Fixed file Votingv2.sol [SHA256]:

b9176f6ce3a0f35f24571546e601248ebc4bc44324a0c8670559530c11fb6068

Copyright © CTDSec - All rights reserved 16 | Page

